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The pressure gradient term plays a vital role in convective heat transfer in the boundary layer flow of a 

Maxwell fluid over a stretching sheet. The importance of the effects of the term can be monitored by developing 
Maxwell’s equation of momentum and energy with the pressure gradient term. To achieve this goal, an 
approximation technique, i.e. Homotopy Perturbation Method (HPM) is employed with an application of 
algorithms of Adams Method (AM) and Gear Method (GM). With this approximation method we can study the 
effects of the pressure gradient ( )m , Deborah number ( )β , the ratio of the free stream velocity parameter to the 

stretching sheet parameter ( )ε  and Prandtl number ( )Pr  on both the momentum and thermal boundary layer 
thicknesses. The results have been compared in the absence and presence of the pressure gradient term m . It has 
an impact of thinning of the momentum and boundary layer thickness for non-zero values of the pressure 
gradient. The convergence of the system has been taken into account for the stretching sheet parameter ε . The 
result of the system indicates the significant thinning of the momentum and thermal boundary layer thickness in 
velocity and temperature profiles. On the other hand, some results show negative values of ( )'f η  and ( )θ η , 
which indicates the case of fluid cooling. 

 
Key words: Homotopy Perturbation Method (HPM), pressure gradient parameter, convective heat transfer, 

Maxwell fluid, stretching sheet. 
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1. Introduction 
 
 The connective heat transfer phenomena are the subject of research which has attracted several 
researchers due to numerous industrial and biological engineering applications such as compulsive convection 
in conduits, production of papers, fibre glass, different types of paints, and electronic chips, material 
processing, crystal growth, nuclear reactor cooling, food processing and movement of biological fluids, drilling 
muds, shampoo, ketchup, cement, sludge, grease, granular suspension, aqueous foams, slurries, plastics, etc. [1, 
2]. Although a lot of investigation has been done on the convective heat transfer in the boundary layer flow, 
there will always be room for deeper and wider understanding of these phenomena. Fathizadeh and Rashidi [3], 
Aziz [4], Ishak [5] and Shagaiya and Daniel [6] studied the convective heat transfer in the boundary layer flow 
of Newtonian fluids. In recent years, Bhattacharyya et al. [2], Surati and Timol [7], Patel and Timol [8] and 
Hayat et al. [9] used non-Newtonian fluids to analyse the convective heat transfer in the boundary layer flows. 

Hayat et al. [1], Malik et al. [10], Singh and Agarwal [11], Javed et al. [12], Shateyi [13], 
Mukhopadhyay [14], Bhattacharyya [15], Ibrahim and Suneetha [16], Rehman and Nadeem [17] and Saleh et 
al. [18] theoretically studied the behaviour of the fluid flow and boundary layer thickness along with the 
convective heat transfer in the flow of Newtonian and non-Newtonian fluids over a stretching sheet with 
various boundary conditions and parameters, but they did not discuss the effects of the pressure gradient on 
various rheological quantities. 

The Homotopy Perturbation Method (HPM) is an effective and powerful analytical method which 
was first developed by Ji-Huan [19] for solving nonlinear differential equations. It has been well established 
that the analytical solutions obtained through this method converge rapidly [20]. As an approximation 
technique, several researchers [20-23] have applied it to solve various kinds of nonlinear differential 
equations and also to solve problems from several branches of engineering and biological sciences. Later on, 
this method was significantly improved by Ji-Huan [20] and other researchers [24-26].  

Fan et al. [27] and Ishak in [28] propounded that their analytical solution to temperature profile 
converges to 0 for a wide range of values of the free convective parameter γ  and the unsteadiness parameter, 
respectively .A  Bhattacharyya et al. in [29, 30] analysed the effects of slip velocity at the boundary on the heat 
transfer in the stagnation point flow over a stretching sheet. Motsa and Sibanda in [31] obtained semi-analytical 
solution to the MHD flow over a nonlinear stretching sheet. Rahman et al. [32] investigated heat transfer 
characteristics in a micropolar fluid flow along a non-linear stretching sheet with a temperature-dependent 
viscosity and variable surface temperature. Hayat et al. in [33] analysed the mixed convection stagnation point 
flow of a Casson fluid with convective boundary conditions. Kazem et al. in [34] derived the analytical solutions 
to a stagnation-point flow past a porous stretching sheet with heat generation and used several parameters such as 
the porosity parameter M , the stretching parameter C , the Prandtl number Pr  and the dimensionless heat 
generation/absorption coefficient B  to study the convergence of the obtained analytical solution. To the 
knowledge of the authors the effects of the pressure gradient on the convective heat transfer in a boundary layer 
flow of a Maxwell fluid past a stretching sheet have not been studied yet, and thus it is proposed to study the 
effects of the pressure gradient on the convective hear transfer of a non-Newtonian Maxwell fluid. 

The present study employs He’s HPM to obtain the approximate analytical solution to the convective 
heat transfer in the boundary layer flow of a Maxwell fluid over a stretching sheet in the presence and 
absence of the pressure gradient. To obtain the solution of this problem, two main algorithms such as Adams 
Method (AM) [35] and Gear Method (GM) [36] have been used [37] with an application of HPM. The effect 
of the pressure gradient m  on the velocity and temperature profiles is analysed for different values of the 
Deborah number β , the ratio of the stretching velocity parameter ε  and Prandtl numbers Pr . To the 
knowledge of the authors, the proposed research problem has not been studied so far. 
 
2. Basics of HPM 
 
 The solution methodology of the HPM is explained hereunder: Consider the nonlinear differential 
equation 
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  ( ) ( ) , ,A u f r 0 r− = ∈Ω  (2.1) 
 
along with the boundary conditions  
 
  ( ), / ,B u u n 0 r∂ ∂ = ∈Γ  (2.2) 
 
where ( )A u  is a differential operator, B  is the boundary condition, ( )f r  is an analytic function, Ω  is the 
boundary of the domain Γ . The differential operator ( )A u in Eq.(2.1) can be split into two parts, such as the 
linear differential operator ( )L u  and nonlinear differential operator ( )N u , therefore, Eq.(2.1) reduces to the 
form given below:  
 
  ( ) ( ) ( )  .L u N u f r 0+ − =  (2.3) 
 
By the HPM [10, 37], a homotopy ( ) [ ], : ,r P 0 1 Rυ Ω × →  is constructed, which satisfies  
 
  ( ) ( ) ( ) ( ) ( ) ( ) [ ], ,  , ,  oH v p 1 p L v L u p A v f r 0 p 0 1 r = − − +  −  = ∈ ∈Ω    (2.4) 
 
or 
 
  ( ) ( ) ( ) ( ) ( ) ( ) , o oH v p L v L u pL u p N v f r 0= − + +  −  =   (2.5) 
 
where [ ],p 0 1∈  is a parameter which is embedded, ou  is the initial approximated solution of Eq.(2.1), where 
the boundary conditions are fulfilled. Clearly, from Eq.(2.4) or Eq.(2.5), H  takes the following forms: 
 
  ( ) ( ) ( ) ,  ,oH v 0 L v L u 0= − =  (2.6) 
 
  ( ) ( ) ( ) , .H v 1 A v f r 0= − =  (2.7) 
 
The transformation of p  from 0 to 1 is referred to as ( ),v r p  from ( )ou r  to ( )u r . Topologically, this is 
known as a deformation, besides ( ) ( ) ( ) ( ),oL v L u A v f r− −  are termed as homotopic. In this study, the 
embedding parameter p  is a small parameter. Assume that the solution of Eq.(2.4) or Eq.(2.5) can be written 
as a power series in p : 
 
   .....2

0 1 2v v pv p v= + + +  (2.8) 
 
Setting p 1=  results in the approximate solution of Eq.(2.1), we get 
 
   lim ......0 1 2

p 1
u v v v v

→
= = + + +  (2.9) 

 
The coupling of the perturbation method and the homotopy method is called the homotopy perturbation 
method, which has eliminated limitations of the traditional perturbation methods. On the other hand, the 
proposed technique can take full advantage of the traditional perturbation techniques. 
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3. Mathematical formulation 
 

Consider the convective heat transfer in the boundary layer flow of a Maxwell fluid over a stretching 
sheet in the presence of the pressure gradient which is governed by the continuity and the momentum equations. 
The governing equations of continuity, momentum and energy may be written in usual notation as [2, 38]:  
 

   ,u v 0
x y

∂ ∂+ =
∂ ∂

 (3.1) 

 

   ,
2 2 2 2

2 2
2 2 2

u v u v u 1 dP uu v u v 2u v v
x y x y dxx y x

 ∂ ∂ ∂ ∂ ∂ ∂+ + λ + + = − + ∂ ∂ ∂ ∂ ρ∂ ∂ ∂  
 (3.2) 

 

   
2

2
P

T T Tu v
x y c y

∂ ∂ κ ∂+ =
∂ ∂ ρ ∂

 (3.3) 

 
where u  and v  are the components of velocity in the x  and y  directions, respectively, υ  is the kinematic 
fluid viscosity, ρ  is the fluid density, µ  is the coefficient of fluid viscosity, λ  is the relaxation time, T  is 
the temperature, κ  is the fluid thermal conductivity and pc  is the specific heat. Subject to the boundary 
conditions: 
 

  
 ( ) , , at , ,

( ) , , at , .

m
w w

m

u U x a x v 0 T T y 0 0

u U x b x v 0 T T y∞ ∞ ∞

= = = = = η =

= = = → → ∞ η = η

 (3.4) 

 
Now, the stream function ( ),x yψ  is introduced as: 
 

   , .u v
y x

∂ ψ ∂ ψ= = −
∂ ∂

 (3.5) 

 

For an external flow 1 dP
dx

−
ρ

 can be replaced by dUU
dx

∞
∞ , and taking into consideration Eq.(3.5), Eq.(3.1) 

is identically satisfied and Eqs (3.2) and (3.3) can be reduced to the following forms: 
 

  

 
2 22 2 2 3

2 3

3 3

2 3

y x y x y x y xy y

dU2 U v
y x dxx y y

∞
∞

 ∂ψ ∂ ψ ∂ψ ∂ ψ ∂ψ ∂ ψ ∂ψ ∂ ψ − + λ + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂  ∂  
∂ψ ∂ψ ∂ ψ ∂ ψ− = +∂ ∂ ∂ ∂ ∂

 (3.6) 

 
and 
 

   
2

2
P

T T T
y x x y c y

∂ψ ∂ ∂ψ ∂ κ ∂− =
∂ ∂ ∂ ∂ ρ ∂

. (3.7) 
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Here, we have introduced the dimensionless variables as below: 
 

  ( )( ) , ( ),w
w

U xy f vxU x
vx

η = ψ = η   

 

  ( ) ( ) and ( ) ,
( )

m

w

T T dU xxU x bx m
T T U x dx

∞ ∞
∞

∞ ∞

 −θ η = = = −  
. (3.8) 

 
Based on Eq.(3.8), we have used similarity transformation to reduce the governing differential equations; 
Eq.(3.6) and Eq.(3.7) to ordinary non-linear differential equations, Eq.(3.9) and Eq.(3.10), respectively.  
 

  
( ) ( )( ) ( )

( ) ( )( )

 ''' ' '' ) ' '' '

''' ' '' ,

2 2 3

2 2

m 1f m 1 f f f m 1 3 m f f 4m m 1 f
2 2

m 1 f f 2 m 1 3m 1 f f f 0

+ β  + − + − − − η + + +   
+ + − + − =


 (3.9) 

 

  ( )Pr
 '' '

m 1
f 0

2
+

θ + θ =  (3.10) 

 
where ( ) /U x 2x∞β = λ  is the Deborah number [39] and Pr /pµc= κ  is the Prandtl number [40]. The 
boundary conditions are obtained from the similarity variables as given below: 
 
  ( ) ( ) ( ) ( ) ( ) , ' , ' , ,f 0 0 f 0 1 f 0 1 0∞ ∞= η = = η = ε θ = θ η =  (3.11) 
 

where b
a

ε = , b  is the free stream velocity parameter, a  is the stretching sheet parameter, ε  is the ratio of 

the free stream velocity parameter to the stretching sheet parameter. 
 
4. HPM Solution 
 
 According to the HPM method from Eqs (3.9) and (3.10) we get: 
 

  
( )( ) ( ) ( )( )

( ) ( ) ( )( )

 ''' ''' ''' '' ' ' ''

' ''' ' '' .

2 2
0

23 2

m 11 p f f pf f f m 1 f m 1 3 m f f
2 2

4m m 1 f m 1 f f 2 m 1 3m 1 f f f 0

+ β  − − + + + − − − − η   
+ + + + − + − =


 (4.1) 

 

  ( )( ) ( )Pr
 '' '' '' '0

m 1
1 p p f 0

2
 + 

− θ − θ + θ + θ = 
 

, (4.2) 

 
   .....2

0 1 2f f pf p f= + + + , (4.3) 
 
  .....2

0 1 2p pθ = θ + θ + θ + . (4.4) 
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Assuming ''' , '' ,f 0 0= θ =  and using Eq.(3.11), Eq.(4.3) and Eq.(4.4) in Eqs (4.1)-(4.2) and then 
simplifying the resulting equations and thereafter equating the terms involving the like powers of p -terms, 
we have the following equations: 
 

  
( ) ( ) ( )

( ) ( )

'''

''

: , , ' , ' ,

, , ,

0
0 0 0 0

0 0 0

p f 0 f 0 0 f 0 1 f

0 0 1 0

∞

∞

= = = η = ε

θ = θ = θ η =

 (4.5) 

 

  

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

''' ' '' ' ' ''

' ''

:

, , , ,

Pr
'' , , ,

21 2 2
1 0 0 0 0 0 0 0

2 2
0 0 1 1 1

1 0 0 1 1

m 1p f m f 1 f f 2m m 1 f 1 2m 3m f f f
2

1 4m 3 m f f f 0 0 f 0 1 f
2

m 1
f 0 0 0

2

∞

∞

+ = − − + + β + − − β + 
 

′ ′+ − η − η β = = η = ε

+
′θ = − θ θ = θ η =

 (4.6) 

 

  

( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )

( )

''' ' ' '' '' ' '

' '' ' '' ' ''

' '' ' '' ' '''

:

,

Pr
, ' , ' , '' ,

22
2 0 1 1 0 0 1 0 1

2 2
0 1 0 0 0 1 0 1 0

2
2 2

0 1 0 0 1 0 1

2 2 2 2 0 1 1 0

2

m 1p f 2 m f f f f f f 6 m m 1 f f
2

1 2m 3m f f f f f f f f f 3 4m m

m 11f f f f f f f
2 2

m 1
f 0 0 f 0 1 f f f

2

0

∞

+ = − + β + + 
 

+ − − β× + + + ηβ − + − +

+ + + + β 
 

+
′ ′= = η = ε θ = − θ + θ

θ = ( ), ,20 0∞θ η =

 (4.7) 

 

  

( ) ( )

( )( ) (
) ( )

''' ' ' ' '' '' ''

' ' ' ' ' '' ' '' ' '' ' ''

' '' ' '' ' ' '' ' '' ' '' '' '

:

2 2

3 2
3 1 0 2 2 0 1 1 0 2

2
1 0 0 2 0 2 0 1 1 0 0 2 0 0 1 1

2 2 2
1 0 1 0 0 2 0 2 0 1 0 0 1 1 0

m 1p f m f 2 m f f f f f f f f 6 m m 1
2

f f f f 1 2m 3m f f f f f f f f f f f f

1 1f f f f f f 3 4m m f f f f f f f f f f
2 2

+ = + − + + + β + × 
 

× + − − β× + + + +

+ + + ηβ − + − + + +

( )

( ) ( ) ( )

''

''' ''' ,

, ' , ' ,

2

2 2
0 1 1 0 2

3 3 3

11 2 m m f f f f f
2

f 0 0 f 0 1 f ∞

  + 
 

 +β + + + 
 

= = η = ε

 (4.8) 

 

  ( ) ( ) ( ) ( )Pr
'' , , .3 0 2 1 1 2 0 3 3

m 1
f f f 0 0 0

2 ∞
+

′ ′ ′θ = − θ + θ + θ θ = θ η =  (4.9)  



110  Effects of pressure gradient on convective heat transfer in a… 

Solving Eqs (4.5)-(4.9), we get 
 

  ( ) ,2 2
0

1f 2
2 ∞

∞
= −η + ηη + η ε

η
 (4.10) 

 

  
(

)
 

... ,

6 5 4 2 2 4 6 3
1 2

2 3 4 6 2 5 2 2 2 4

1f 4 2 10 2 4
480

12 12 12 6

∞ ∞ ∞
∞

∞ ∞ ∞

= βη − βη η + βη η − βη η − βη ε +
η

− βη ε η + βη ε − βη ε η − βη ε η −
  (4.11) 

 

  
(

)
 

... ,

3 2 5 10 2 2 5 10 2 5 10 2 5 10
2 5

3 2 4 10 2 2 4 10 2 4 10 2 4 10

1f 2772 m 1596 m 2828 868
2419200

13860 m 7980 m 14140 m 4340
∞

= β ε η − β ε η + β ε η − β ε η +
η

− β ε η + β ε η − β ε η + β ε η +
 (4.12) 

 

  

(

)

 

......

2
5 3 7 6 4 2 4 10

3

3 14
3 3 7 6 2 4 5 10

7

3 14 3 14 5 3 4 5 5 10 2 4 4 5 10

f 92085840 m 664356000 m
83026944000

1 2848 33532319791936 m
13 34838400

19936 9966 m 5775 m 3465 m
13 13

38824

∞
∞

∞ ∞
∞

∞ ∞

η= η + − β ε η + β ε η +
η

 β η+ β ε η + − − + β η ε η +η 

+ β η ε + β η + β η ε η + β η ε η +

+

... ,

3 14 3 3 4 3 5 10 3 14 3 4 5 10

3 14

186634 30542 57379m m m m
39 3 39 3

231794 m
39

∞ ∞β η − β η ε η + β η − β η ε η +

− β η ε + 


  (4.13)  

 

  ( ) ,0
1

∞
∞

θ = η − η
η

  (4.14)  

 

  
(

)
Pr Pr Pr Pr

Pr Pr Pr Pr Pr Pr ,

4 3 3 4
1 2

3 4 3 3 4 3

1 m 4 m 3 m m
48

m 4 3

∞ ∞
∞

∞ ∞ ∞ ∞

θ = −η + η η − η η + η ε +
η

−η εη − η + η η − η η + η ε − η εη
  (4.15)  

 

  
(

)
Pr Pr Pr Pr

Pr Pr Pr Pr ... ,

2 3 8 3 8 3 8 2 2 8
2 4

2 8 2 8 2 8 8

1 18 m 12 m 6 54 m
80640

36 m 18 18 m 12 m
∞

θ = βε η + βε η − βε η − βε η +
η

− βε η + βε η − β η − βη +
  (4.16) 

 

  

( Pr Pr

Pr Pr Pr

Pr Pr Pr

Pr Pr Pr ..

2 3 11 4 2 12
3 6

2 5 11 3 2 12 3 2 5 11

2 2 12 2 5 2 11 2 12 2

2 12 2 5 11 2 12

1 23184 m 2772 m
638668800

149688 1176 m 770472 m

1232 m 211464 m 6160 m

1960 m 569160 m 9700 m

∞
∞

∞ ∞

∞

∞

θ = η β ε η + β η +
η

+ β ηε η − β η − β ηε η +

− β η − ηε β η + β η ε +

− β η + β ηε η + β η ε + ). .

 (4.17) 
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5. Results and discussion 
 
 The primary objective of this study is to discuss the effects of various flow parameters such as the 
pressure gradient ( )m , dimensionless variable ( )∞η , the ratio of the free stream velocity parameter to the 
stretching sheet parameter ( )ε , Deborah number ( )β  and Prandtl number ( )Pr  on the important rheological 
measurements such as velocity and temperature profiles. The analytic solutions obtained in Eqs (4.10)-(4.16) 
are evaluated for different values of the parameters to obtain data for plotting appropriate graphs and then the 
results are analysed. 
 

 
 

Fig.1. Velocity profile for ( )'f η  for different values of ε  when .0 1β = − , m 0=  and 5∞η = . 
 

 
 

Fig.2. Velocity profile for ( )'f η  for different values of ε when .0 1β = − , .m 0 2= −  and 5∞η = . 
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Fig.3. Velocity profile for ( )'f η  for different values of m when .0 1β = − , .0 1ε =  and 4∞η = . 
 

 
 

Fig.4. Velocity profile ( )'f η for different values of β  when .m 0 1= , .0 1ε =  and 5∞η = . 
  
 The solution system has become convergent for the considered values of ε  as discussed in Fig.1. for 
the velocity profile. As ε  is a ratio, it converges to the ratio value 0.4 instead of converging to 0.1, 0.2 or 
0.8, since in the present study, boundary layer thickness ranges from 4 for the value of ( )'f η , whereas as 
reported earlier, it starts from 1 (as mentioned in Section 1). For the temperature profile, it is shown to be 
convergent to “0” for the considered values of ε as shown in Fig.5. These results are similar to the cases 
discussed in Section 1. Reported results are in the presence and absence of the pressure gradient m  for the 
sake of comparison. In Figs 1 and 2, we have plotted velocity profiles for m 0=  and .m 0 2= −  respectively. 
In Fig.1., it can be observed that the momentum boundary layer thickness decreases with the decreasing 
value of ε . The boundary layer thickness becomes significantly thinner. Note that in Fig.2., a curve for 
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0ε =  shows some negative values for ( )f ′ η . This is the case of fluid cooling. It is possible when the 
buoyancy force opposes the stretching motion of the surface, thus the fluid flow caused by the upward 
motion of the surface is opposed by the free convection currents which were induced by the buoyancy force 
and hence ( )'f η  decreases [27].  

 

 
 

Fig.5. Energy profile for ( )θ η  for different values of at 5∞η = , .0 1β = − , m 0=  and Pr .0 3= . 
 

 
 

Fig.6. Energy profile for ( )θ η  for different values of at 5∞η = , .0 1β = − , .m 0 2= −  and Pr .0 3= . 
 

Figure 3 shows the increasing behaviour of the fluid flow for the decreasing values of m  and thus 
the thickness of the boundary layer increases. Figure 4 illustrates the velocity profile for different values of 
β  at 5∞η =  when m 0=  and .m 0 1= , respectively. Both the figures show the increasing behaviour of the 
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fluid flow for the decreasing values of β  so that the boundary layer thickness increases. Figures 5-6 depict 
the energy profiles for ε  in the absence and presence of the pressure gradient m . From these figures, it is 
observed that the thermal boundary layer thickness decreases with the increasing values of ε . On comparing 
these three figures, one can note that the thermal boundary layer thickness decreases when the pressure 
gradient parameter m  increases from −0.2 to 0.2 and hence the thermal boundary layer thickness decreases. 

 

 
 

Fig.7. Energy profile for ( )θ η  for the different values of β  at .m 0 05= , .0 1ε = , Pr .0 3=  and 5∞η = . 
 

 
 

Fig.8. Energy profile for ( )θ η  for different values of β  at .m 0 05= − , .0 1ε = , Pr .0 3=  and 5∞η = . 
 

 Figures 7-8 show the energy profile for β  in the absence and presence of the pressure gradient m , 
respectively. Figure 7 shows that the thermal boundary layer thickness increases with the increasing values 
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of β . On the other hand, in Fig.8., the behaviour of the thermal boundary layer thickness changed to a 
decreasing trend with the increasing values of β  which is the case in the presence of m  and hence the 
thermal boundary layer thickness decreases. In all two figures the values of β  range from 5 5− ≤ β ≤ . From 
Fig.7., it is noticed that the negative values of ( )θ η  for the value of .0 05β =  lead to the fluid cooling case. 
Physically, this is possible when the fluid is cooled. The values .0 1β > −  indicate the fluid becomes cooled. 
Figure 9 shows the energy profiles for different values of the Prandtl number Pr  in the absence and presence 
of the pressure gradient m . In the specified circumstances, the thermal boundary layer thickness decreases. 
On the other hand, all of these three figures show the variation of energy profiles when the pressure gradient 
m  ranges from −0.2 to 0.2 and it is observed that the thermal boundary layer thickness decreases. 
 

 
 

Fig.9. Energy profile for ( )θ η  for different values of Pr  at 5∞η = , .0 1ε = , .m 0 2=  and .0 1β = − . 
 

It is clear from Fig.9. that the negative values of ( )θ η  for the value of Pr .0 3=  lead to the fluid cooling 
case. Physically, this is possible when the fluid is cooled. When the Prandtl number Pr .0 2> , the fluid cools 
down. 
 
6. Conclusion 
 

In this research problem, partial differential equations have been established for the convective heat 
transfer in the boundary layer flow of a Maxwell fluid over a stretching sheet in the presence and absence of the 
pressure gradient. To get a solution of such a problem, initially similarity transformation technique has been 
used to transform these equations into an ODE (Ordinary Differential Equation) and then an approximation 
technique has been implemented through an application of Adam and Gear Methods. 

The results have been reported in the absence and presence of the pressure gradient for the sake of 
comparison. From the plots of velocity profiles ( )'f η , it is observed that the boundary layer thickness 
increases, except in the two cases where the boundary layer thickness decreases for the case of ε  in Figs 1 
and 2. The thermal boundary layer thickness has decreased for all results, except in Fig.7. which shows that 
the thermal boundary layer thickness increased. As a whole, results indicate a significant thinning in the 
momentum and thermal boundary layer thickness in both velocity and temperature profiles. On the other 
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hand, some figures exhibit negative values for ( )'f η  and ( )θ η  which indicate the case of fluid cooling. It is 
also noted that the momentum and boundary layer thickness decrease for non-zero values of the pressure 
gradient m . 
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Nomenclature 
 
 a  – stretching sheet parameter 
 A  – general differential operator 
 AM – Adams Method 
 b  – free stream velocity parameter 
 B  – boundary operator 
 pc  – specific heat 

 f  – dimensionless velocity function 

 GM – Gear Method 
 H  – convective heat transfer coefficient 
 HPM – homotopy perturbation method 
 L  – linear operator 
 m  – pressure gradient parameter 
 n  – number of approximations 
 N  – non-linear operator 
 NM – numerical method 
 p  – embedding parameter of homotopy 

 P  – pressure 
 Pr  – Prandtl Number 

 ( )q r  – analytic function 

 T  – temperature 
 wT  – wall temperature 

 T∞  – local ambient temperature 

 ,u v  – fluctuating velocity components in x and y directions 

 ,x y  – coordinates along and perpendicular to the plate 

 β  – Deborah Number 

 Γ  – boundary of the domain Ω   
 δ  – boundary layer thickness 
 ε  – ratio of free stream velocity parameter to stretching sheet parameter 
 η  – dimensionless variable 
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 θ  – dimensionless temperature 
 κ  – fluid thermal conductivity 
 λ  – relaxation time or Maxwell parameter 
 µ  – coefficient of fluid viscosity 

 Ρ  – fluid density 
 υ  – kinematics fluid viscosity 
 ψ  – streamline function 
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